Sabtu, 08 Agustus 2015

Bangun Datar


Sifat-Sifat Dan Rumus Persegi

Pada bangun datar persegi, mempunyai sifat-sifat diantaranya :
    Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Memiliki 4 sisi dan 4 titik sudut
  • Memiliki 2 pasang sisi yang sejajar dan sama panjang
  • Keempat sisinya sama panjang
  • Keempat Sudutnya sama besar yaitu 90 derajat (siku-siku)
  • Memiliki 4 simetri lipat
  • Memiliki simetri putar tingkat 4
  • Luas = s x s
  • Keliling = 4 x s

Sifat Sifat Dan Rumus Persegi Panjang

Pada bangun datar persegi panjang, mempunyai sifat-sifat diantaranya :
  • Memiliki 4 sisi dan 4 titik sudut
    Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Memiliki 2 pasang sisi sejajar, berhadapan dan sama panjang
  • Memiliki 4 sudut yang besarnya 90 derajat
  • Keempat sudutnya siku-siku
  • Memiliki 2 diagonal yang sama panjang
  • Memiliki 2 simetri lipat
  • Memiliki Simetri putar tingkat 2
  • Luas = p x l
  • Keliling = 2(p+l)

Sifat Sifat Dan Rumus Segitiga

Pada bangun datar Segitiga, mempunyai sifat-sifat diantaranya :
  • Mempunyai 3 sisi dan 3 titik sudut
  • Jumlah ketiga sudutnya 180 derajat
  • Luas = ½ x a x t
  • Keliling = AB + BC + AC 

Bangun segitiga terdiri dari 4 macam, jika dibedakan menurut panjang susu segitiga tersebut yaitu : segitiga sama sisi, segitiga sama kaki, segitiga siku-siku dan segitiga sembarang.

Pada bangun datar Segitiga sama sisi, mempunyai sifat-sifat diantaranya :
Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Mempunyai 3 buah sisi sama panjang, yaitu AB=BC=CA
  • Mempunyai 3 buah sudut yang besar , yaitu <ABC , <BCA, <CAB
  • Mempunyai 3 sumbu simetri.
  • Mempunyai 3 simetri putar dan 3 simetri lipat

Pada bangun datar Segitiga sama kaki, mempunyai sifat-sifat diantaranya :
Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Mempunyai 2 buah sisi yang sama panjang, yaitu BC=AC
  • Mempunyai 2 buah sudut sama besar, yaitu < BAC = <ABC
  • Mempunyai 1 sumbu simetri.
  • Dapat menempati bingkainya dalam dua cara.
Pada bangun datar Segitiga siku-siku, mempunyai sifat-sifat diantaranya :
Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Mempunyai 1 buah sudut siku-siku,yaitu <BAC
  • Mempunyai 2 buah sisi yang saling tegak lurus, yaitu BA dan AC
  • Mempunyai 1 buah sisi miring yaitu BC
  • Sisi miring selalu terdapat di depan sudut siku-siku.
  • Segitiga siku-siku samakaki memiliki 1 sumbu simetri.

Pada bangun datar Segitiga sembarang, mempunyai sifat-sifat diantaranya :

Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Mempunyai 3 buah sisi yang tidak sama panjang.
  • Mempunyai 3 buah sudut yang tidak sama besar.



Sifat Sifat Dan Rumus Jajaran Genjang

Pada bangun datar Jajaran Genjang, mempunyai sifat-sifat diantaranya :
  • Memiliki 4 sisi dan 4 titik sudut
    Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Memiliki 2 pasang sisi yang sejajar dan sama panjang
  • Memiliki 2 sudut tumpul dan 2 sudut lancip
  • Sudut yang berhadapan sama besar
  • Diagonalnya tidak sama panjang
  • Tidak memiliki simetri lipat
  • Memiliki simetri putar tingkat 2
  • Luas = a x t
  • Keliling = AB + BC + CD + AD

Sifat Sifat Dan Rumus Trapesium

Pada bangun datar Trapesium, mempunyai sifat-sifat diantaranya : 
Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Memiliki 4 sisi dan 4 titik sudut
  • Memiliki sepasang sisi yang sejajar tetapi tidak sama panjang
  • Sudut - sudut diantara sisi sejajar besarnya 180 derajat
  • Luas = (Jumlah sisi Sejajar) x t /2
  • Keliling = AB + BC + CD + AD

Trapesium mempunyai 3 bentuk, diantarnya :

Trapesium siku-siku 
  • Mempunyai 2 sudut siku-siku                                               
  • Diagonal tidak sama panjang
  • Tidak mempunyai simetri lipat

Trapesium sama kaki
  • Sisi diantara sisi sejajar sama panjang.
  • Memiliki 2 pasang sudut yang sama besar.                                     
  • Diagonal sama panjang.
  • Memiliki 1 simetri lipat.

Trapesium sembarang
  • Keempat sisinya tidak sama panjang.                                                                
  • Keempat sudutnya tidak sama besar.
  • Diagonalnya tidak sama panjang.
  • Tidak memiliki simetri lipat.

Sifat Sifat Dan Rumus Layang - Layang

Pada bangun datar Layang - Layang, mempunyai sifat-sifat diantaranya :
Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Memiliki 4 sisi dan 4 titik sudut
  • Memiliki 2 pasang sisi yang sama panjang
  • Memiliki 2 sudut yang sama besar
  • Diagonalnya berpotongan tegak lurus
  • Salah satu diagonalnya membagi diagonal yang lain sama panjang
  • Memiliki 1 simetri lipat.  
  • Luas = ½ x AC x BD
  • Keliling = AB + BC + CD + AD

Sifat Sifat Dan Rumus Belah Ketupat

Pada bangun datar Belah Ketupat, mempunyai sifat-sifat diantaranya :
Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Memiliki 4 sisi dan 4 titik sudut
  • Keempat sisinya sama panjang
  • Memiliki 2 pasang sudut yang berhadapan sama besar
  • Diagonalnya berpotongan tegak lurus
  • Memiliki 2 simetri lipat
  • Memiliki simetri putar tingkat 2
  • Luas = ½ AC x BD
  • Keliling = AB + BC + CD + AD

Sifat Sifat Dan Rumus Lingkaran

Pada bangun datar Lingkaran, mempunyai sifat-sifat diantaranya :
Sifat Sifat Bangun Datar - Rumus Bangun Datar
  • Mempunyai 1 sisi
  • Memiliki simetri putar dan simetri lipat tak terhingga
  • Luas = πr2
  • Keliling = 2πr

Bangun Ruang

1. RUMUS BANGUN RUANG KUBUS



RUMUS BANGUN RUANG KUBUS

Kubus terdapat 6 (enam) buah sisi yang berbentuk persegi dengan luas yang sama besar diantara sisinya.
Terdapat 12 (dua belas) rusuk dengan panjang rusuk yang sama panjang.
Semua sudut bernilai 90 derajat ataupun siku-siku.


Rumus:

Luas salah satu sisi = rusuk x rusuk   
Luas Permukaan Kubus = 6 x rusuk x rusuk
Keliling Kubus = 12 x rusuk
Volume Kubus = rusuk x rusuk x rusuk ( rusuk 3 )

   

2. RUMUS BANGUN RUANG BALOK

RUMUS BANGUN RUANG BALOK


Rumus:

Luas Permukaan Balok = 2 x {(pxl) + (pxt) + (lxt)}
Diagonal Ruang = Akar dari (p kuadrat + l kuadrat + t kuadrat)
Keliling Balok = 4 x (p + l + t)
Volume Balok = p x l x t (sama dengan kubus, tapi semua rusuk kubus sama panjang).

3. RUMUS BANGUN RUANG BOLA 


RUMUS BANGUN RUANG BOLA
Rumus:

Luas Bola = 4 x π x jari-jari x jari-jari, atau
                    4 x π x r2
Volume Bola = 4/3 x π x jari-jari x jari-jari x jari-jari
π  = 3,14 atau 22/7

   

4. RUMUS BANGUN RUANG TABUNG/SILINDER 

RUMUS BANGUN RUANG TABUNG

 
Rumus:


Volume = luas alas x tinggi, atau
                luas lingkaran x t
Luas = luas alas + luas tutup + luas selimut, atau
            ( 2 x π x r x r) + π x d x t)


5. RUMUS BANGUN RUANG KERUCUT 


RUMUS BANGUN RUANG KERUCUT
Rumus:


Volume = 1/3 x π x r x r x t
Luas = luas alas + luas selimut


6. RUMUS BANGUN RUANG LIMAS


RUMUS BANGUN RUANG LIMAS
Rumus:

Volume = 1/3 luas alas tinggi sisi
Luas = luas alas + jumlah luas sisi tegak

ALJABAR

Aljabar merupakan salah satu cabang matematika yang mempelajari penyederhanaan serta pemecahan masalah menggunakan simbol yang menjadi pengganti konstanta atau variabel.
Unsur-Unsur Aljabar
1. Variabel, konstanta, faktor
Variabel/peubah adalah lambang pengganti suatu bilangan yang nilainya belum diketahui dengan jelas, biasanya dilambangkan dengan huruf kecil a, b, c, …, z.
Konstanta adalah suku dari suatu bentuk aljabar dan berupa bilangan serta tidak memuat variabel.
Jika terdapat suatu bilangan a dan dapat diubah menjadi a=p.q dimana a, p, dan q bilangan bulat maka p dan q disebut faktor-faktor dari a.
contoh : 7x+3y+8x-5y+6
variabel : x dan y
konstanta : 6
7x dapat diuraikan menjadi 7x=7x.1 atau 7x=7.x sehingga faktor dari7x yaitu 1, 7, x, 7x
2. Suku Sejenis dan Suku Tak Sejenis
Suku merupakan variabel koefisien atau konstanta pada bentuk aljabar yang dipisahkan dengan operasi jumlah atau selisih.
Suku-suku sejenis merupakan suku yang memiliki variabel dan pangkat dari masing-masing variabel yang sama. contoh : 5x dan -3x, 2a² dan a², y dan 6y
Suku-suku tak sejenis merupakan suku yang memiliki variabel dan pangkat dari masing-masing variabel yang tidak sama.
contoh : 2x dan 3x², -7y dan -x²
Suku satu merupakan bentuk aljabar yang tidak dihubungkan oleh operasi jumlah dan selisih. contoh : 2x, 4y, …
Suku dua merupakan bentuk aljabar yang dihubungkan oleh satu operasi jumlah atau selisih. contoh : 2x-4y, a²-5, …
Suku tiga merupakan bentuk aljabar yang dihubungkan oleh dua operasi jumlah atau selisih. contoh : 2x²+3×-1, 3x+4y-xy, …
Operasi Hitung Pada Aljabar
1. Penjumlahan dan Pengurangan Bentuk Aljabar
Operasi ini hanya dapat dilakukan pada suku-suku yang sejenis.
2. Perkalian
Pada perkalian bilangan bulat berlaku sifat distributif a(b+c)=ab+ac dan a(b-c)=ab-ac. Sifat ini juga berlaku untuk bentuk aljabar.
3. Perpangkatan
Dalam bilangan bulat Operasi perpangkatan dapat diartikan sebagai perkalian berulang dengan bilangan yang sama. Hal yang sama berlaku untuk aljabar, pada perpangkatan aljabar koefisien tiap suku ditentukan menurut segitiga pascal.
SEGITIGA PASCAL
ALJABAR1
4. Pembagian
Hasil dari pembagian dua buah bentuk aljabar diperoleh dengan terlebih dahulu menentukan faktor sekutu dari masing-masing selanjutnya melakukan pembagian pada pembilang dan penyebutnya.
5. Substitusi Pada Bentuk Aljabar
Nilai dari suatu bentuk aljabar dapat diperoleh dengan mensubstitusikan sembarang bilangan pada variabel bentuk aljabar tersebut.
6. KPK dan FPB Bentuk Aljabar
Dalam menentukan KPK dan FPB bentuk aljabar dapat dilakukan dengan menyatakan bentuk-bentuk aljabar menjadi perkalian faktor-faktor primanya.
CONTOH FPB DAN KPK ALJABAR
Pecahan Bentuk Aljabar
1. Menyederhanakan Bentuk Pecahan Aljabar
Pecahan bentuk aljabar dikatakan mempunyai bentuk paling sederhana apabila pembilang dan penyebutnya tidak mempunyai faktor persekutuan kecuali 1 serta penyebutnya ≠0. Untuk menyederhanakan pecahan bentuk aljabar dapat dilakukan dengan membagi pembilang dan penyebutnya dengan FPB dari keduanya.
2. Operasi Hitung Pecahan Aljabar Dengan Penyebut Suku Tunggal
a. Penjumlahan
Penjumlahan dari pecahan aljabar dilakukan dengan cara yang sama seperti halnya pecahan biasa, yaitu dengan menyamakan penyebut dari pecahan dengan cara mencari KPK nya kemudian baru dijumlahkan. Perhatikan contoh berikut.
CONTOH PENJUMLAHAN PECAHAN ALJABAR
b. Perkalian dan Pembagian
Perkalian dari pecahan aljabar tidak jauh berbeda dengan perkalian pecahan biasa. Perhatikan contoh berikut :
CONTOH PERKALIAN PECAHAN ALJABAR
c. Perpangkatan Pecahan Bentuk Aljabar
Perpangakatan merupakan perkalian berulang dengan bilangan yang sama, hal tersebut juga berlaku dengan perpangkatan bentuk aljabar.
CONTOH PECAHAN ALJABAR

Senin, 03 Agustus 2015

Limit Matematika

Limit suatu fungsi f(x) untuk x mendekati suatu bilangan a adalah nilai pendekatan fungsi f(x) bilamana x mendekati a
Misalnya
lim┬(x→a)⁡〖f(x)=M〗
ini berarti bahwa nilai dari fungsi f(x) mendekati M jika nilai x mendekati a biar lebih paham kita simak contoh berikut
Contoh 1
Tentukan limit dari
soal 2
Jawab :
Untuk nilai x mendekati 1 maka (4x2+1) akan mendekati 4.12 + 1 = 5 sehingga nilai dari
jawaban contoh soal 1
Contoh 2
Tentukan nilai dari limit
lim┬(x→1)⁡〖(x^2+2x-3)/(x-1)〗
Jawab
Misal sobat langsung memasukkan nili x = 1 ke dalam persamaan hasilnya tidak akan terdefinisi karena bilangan pembagi ketemu 0 (x-1). Akan tetapi bentuk di atas masih bisa disederhakan guna menghilangkan komponen pembagi yang bernilai nol yaitu
 lim┬(x→1)⁡〖(x^2+2x-3)/(x-1)=lim┬(x→1)⁡〖((x-1)(x+3))/((x-1))〗 〗=lim┬(x→1)⁡〖x+3=4〗

Cara Mengerjakan Limit Fungsi yang Tidak Terdefinisi

Adakalanya penggantian niali x oleh a dalam lim f(x) x→a membuat f(x) punya nilai yang tidak terdefinisi, atau f(a) menghasilkan bentuk 0/0, ∞/∞ atau 0.∞. Jika terjadi hal tersebut solusinya adalah bentuk f(x) coba sobat sederhanakan agar nilai limitnya dapat ditenntukan.

Limit Bentuk 0/0


Bentuk 0/0 kemungkinan timbul dalam
bentuk o
ketika sobat menemukan  bentuk seperti itu coba untuk utak-utik fungsi tersebut hingga ada yang bisa dicoret. Jika itu bentuk persaman kuadrat sobat bisa coba memfaktorkan atau dengan cara asosiasi dan jangan lupakan ada aturan a2-b2 = (a+b) (a-b). Berikut contohnya
lim┬(x→1)⁡〖(x^2-1)/(x-1)=lim┬(x→1)⁡〖((x-1)(x+1))/(x-1)=lim┬(x→1)⁡〖(x+1)=2〗 〗 〗
bentuk 0 contoh soal 2

Bentuk ∞/∞


Bentuk limit  ∞/∞ terjadi pada fungsi suku banyak (polinom) seperti
limit tak hingga
Contoh Soal
Coba sobat tentukan
cotoh soal limit tak hingga
Jawab
 lim┬(x→∞)⁡〖(〖4x〗^3+2x+1)/(〖5x〗^3+〖8x〗^2+6)〗  =lim┬(x→∞)⁡〖(〖4x〗^3/x^3 +2x/x^3 +1/x^3 )/(〖5x〗^3/x^3 -〖8x〗^2/x^3 +6/x^3 )〗  =lim┬(x→∞)⁡〖(4+2/x^2 +1/x^3 )/(5-8/x+6/x^3 )〗  〖=lim┬(x→∞)〗⁡〖(4+2/∞^2 +1/∞^3 )/(5-8/∞+6/∞^3 )〗  〖=lim┬(x→∞)〗⁡〖(4+0+0)/(5-0+0)=4/5〗
Berikut rangkuman rumus cepat limit matematika bentuk  ∞/∞
rumus limit perubahan
  • Jika m<n maka L = 0
  • Jika m=n maka L = a/p
  • Jika m>n maka L = ∞

Bentuk Limit (∞-∞)


Bentuk (∞-∞) sering sekali muncul dalam ujian nasional. Bentuk soalnya akan sangat beragam. Namun demikian, penyelesaiannya tidak jauh-jauh dari penyederhanaan. Be creative, out of the box. Berikut contoh soal yang kami ambil dari ujian nasional 2013.
Tentukan Limit
2014-03-01_210110
Jika sobat masukkan x -> 1 maka bentuknya akan mmenjadi (∞-∞). Untuk menghilangkan bentuk ∞-∞ kita sederhanakan bentuk tersebut menjadi
jawaban soal
Sekian dulu sobat belajar kita tentang limit matematika. Untuk limit trigonometri akan kita sajikan pada postingan tersendiri. Selamat belajar.

Logika Matematika

Pernyataan

Pernyataan di dalam logika matematika adalah sebuah kalimat yang di dalamnya terkandung nilai-nilai yang dapat dinyatakan 'benar' atau 'salah' namun kalimat tersebut tidak bisa memiliki kedua-duanya (salah dan benar). Sebuah kalimat tidak bisa kita nyatakan sebagai sebuah pernyataan apabila kita tidak bisa menentukan apakah kalimat tersebut benar atau salah dan bersifat relatif. Di dalam logika matematika di kenal dua jenis pernyataan yaitu pernyataan tertutup dan terbuka.
Pernyataan tertutup adalah kalimat pernyataan yang sudah bisa dipastikan nilai benar-salahnya.
Pernyataan terbuka adalah kalimat pernyataan yang belum bisa dipastikan nilai benar salahnya.

Negasi / pernyataan ingkaran

Negasi atau biasa disebut dengan ingkaran adalah kalimat berisi sanggahan, sangkalan, negasi biasanya dibentuk dengan cara menuliskan kata-kata 'tidak benar bahwa...' di depan pernyataan yang disangkal/sanggah,. Seperti pada contoh yang ada di bawah ini:
Pernyataan A : 
Becak memiliki roda tiga buah
Negasi dari pernyataan A : 
Tidak benar bahwa becak memiliki roda tiga buah

Pernyataan Majemuk

Pernyataan majemuk di dalam logika matematika terdiri dari disjungsi , konjungsi , implikasi , dan biimplikasi berikut masing-masing penjelasannya:

Konjungsi

Di dalam logika matematika, dua buah pernyataan dapat digabungkan dengan menggunakan simbol (^) yang dapat diartikan sebagai ‘dan’ . Tabel berikut ini menunjukan logika yang berlaku dama sistem konjungsi:
p
q
P ^ q
Logika matematika
B
B
B
Jika p benar dan q benar maka p dan q adalah benar
B
S
S
Jika p benar dan q salah maka p dan q adalah salah
S
B
S
Jika p salah dan q benar maka p dan q adalah salah
S
S
S
Jika p salah dan q salah  maka p dan q adalah salah
Dari table di atas dapat diambil kesimpulan bahwa di dalam konsep konjungnsi, kedua pernyataan haruslah benar agar dapat dianggap benar selain itu pernyataan akan dianggap salah.

Disjungsi

Selain menggunakan 'dan', dua buah pernyataan di dalam logika matematika dapat dihubungkan dengan simbol (v) yang diartikan sebagai 'atau'. Untuk memahaminya, perhatikan tabel di bawah ini:
p
q
P v q
Logika matematika
B
B
B
Jika p benar dan q benar maka p atau q adalah benar
B
S
B
Jika p benar dan q salah maka p atau q adalah benar
S
B
B
Jika p salah dan q benar maka p atau q adalah benar
S
S
S
Jika p salah dan q salah  maka p atau q adalah salah
Karena di dalam disjungsi menggunakan konsep ‘atau’ artinya apabila salah satu atau kedua pernyataan memiliki nilai benar maka logika matematikanya akan dianggap benar. Pernyataan akan dianggap salah bila keduanya memiliki nilai salah.

Implikasi

Implikasi merupakan logika matematika dengan konsep kesesuaian. Kedua pernyataan akan dihubungkan dengan menggunakan simbol ( => ) dengan makna 'jika p ... Maka q ...'. Untuk lebih jelasnya akan dijelaskan dalam tabel berikut:
p
q
P v q
Logika matematika
B
B
B
Jika awalnya BENAR lalu akhirnya BENAR maka dianggap BENAR
B
S
S
Jika awalnya BENAR lalu akhirnya SALAH maka dianggap SALAH
S
B
B
Jika awalnya SALAH lalu akhirnya BENAR maka dianggap BENAR
S
S
B
Jika awalnya SALAH lalu akhirnya SALAH maka dianggap BENAR

Biimplikasi

Di dalam biimplikasi, pernyataan akan dianggap benar bila keduanya memilki nilai sama-sama benar atau sama-sama salah. Selain itu maka pernyataan akan dianggap salah. Biimplikasi ditunjukan dengan symbol (ó) dengan makna ‘ p ….. Jika dan hanya jika q …..'
p
q
P v q
Logika matematika
B
B
B
P adalah BENAR jika dan hanya jika q adalah BENAR (dianggap benar)
B
S
S
P adalah BENAR jika dan hanya jika q adalah SALAH (dianggap salah)
S
B
B
P adalah SALAH jika dan hanya jika q adalah BENAR (dianggap salah)
S
S
B
P adalah SALAH jika dan hanya jika q adalah SALAH (dianggap benar)

Ekuivalensi pernyataan majemuk

Ekuivalensi pernyataan majemuk artinya persesuaian yang bisa diterapkan dalam konsep-taan majemuk yang telah di jelaskan di atas. dengan begitu kita dapat mengetahui negasi dari konjungsi, disjungsi, implikasi dan juga biimplikasi. konsep ekuivalensi dinyatakan dalam rumus-rumus tertentu seperti yang ada pada gambar di bawah ini:

Logika Matematika

Konvers, Invers dan Kontraposisi

Konsep ini dapat diterapkan dalam sebuah pernyataan implikasi. Setiap pernyataan implikasi memiliki sifat Konvers, Invers dan Kontraposisi seperti yang ada pada gambar bawah ini:
Logika Matematika

Kuantor pernyataan

Pernyataan berkuantor adalah bentuk pernyataan di mana di dalamnya terdapat konsep kuantitas. Ada dua jenis kuantor yaitu kuanor universal dan kuantor eksistensial.
Kuantor universal digunakan dalam pernyataan yang menggunakan konsep setiap atau semua.
Logika Matematika
Kuantor eksistensial digunakan dalam pernyataan yang mengandung konsep ada, sebagian, beberapa, atau terdapat.
Logika Matematika

Ingkaran dari pernyataan berkuantor

Pernyataan berkuantor juga memiliki negasi atau ingkaran. Negasi dari kuantor universal adalah kuantor eksistensial begitu jugas sebaliknya. Seperti pada contoh di bawah ini:
Logika Matematika

Penarikan Kesimpulan

Kesimpulan dapat dilakukan dengan menelaah premis atau pernyataan-pernyataan yang kebenarannya telah dketahui. Perhatikan beberapa konsep penarikan kesimpulan di dalam logika matematika berikut ini:
Logika Matematika


Logika Matematika








Logika Matematika